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Abstract. Coding data—defining concepts and identifying where they occur in 

data—is a critical aspect of qualitative data analysis, and especially so in 

quantitative ethnography. Coding is a central process for creating meaning from 

data, and while much has been written about coding methods and theory, 

relatively little has been written about what constitutes best practices for fair and 

valid coding, what justifies those practices, and how to implement them. In this 

paper, our goal is not to address these issues comprehensively, but to provide 

guidelines for good coding practice and to highlight some of the issues and key 

questions that quantitative ethnographers and other researchers should consider 

when coding data. 

Keywords: Coding, Automated Classifiers, Inter-Rater Reliability (IRR), 
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1 Introduction 

Although it goes by many names—classifying, annotating, categorizing, rating, 

indexing, linking, labeling, tagging, marking up—the process of coding data is a critical 

part of data analysis, and particularly of data analysis in quantitative ethnography. In 

brief, coding refers to the process of (a) defining concepts of interest (“Codes”) and (b) 
identifying places in a dataset where they occur.  

Despite the central role coding plays in interpreting data and testing claims—and the 

extensive literature on coding methods (e.g., [19]) and theory (e.g., [23])—there has 

been relatively little written about what constitutes best practices for fair and valid 

coding, what justifies those practices, and, equally important, how one should 

implement them. 1  The result is a set of coding practices that range from merely 

inconsistent to wholly inappropriate, leading to mistakes and misunderstandings in non-

standard situations. 

There are many reasons for this state of affairs. Different fields have different goals 

and assumptions about coding, and thus sometimes use different practices. Existing 

measures for the reliability of coding are problematic, and for historical reasons are 

 
1 Because we conceive of this contribution as an overview of key issues in coding theory and 

practice for QE researchers, both novice and advanced, and due to the limitations of space, 

we do not include a comprehensive review of the literature on coding and qualitative discourse 

analysis. We will address this shortcoming in a future, expanded version of this paper. 
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used in ways that are not statistically sound. And the theoretical underpinnings of the 

processes of coding are actually quite complex, covering everything from hermeneutics 

and linguistics to statistics and computer science. 

In this paper, we are not attempting to resolve all of these issues, nor to provide a 

complete accounting of all of the conceptual machinery that explains how and why we 

code. Rather, our hope is to provide some guidelines for good coding practice, and 

suggest some of the questions that quantitative ethnographers and other researchers 

need to consider when coding data. 

2 Background 

In simplest terms, a Code is a label that we assign to some piece of data. For example, 

coding a photograph means asserting that it has some particular property of interest 

(perhaps that it contains the IMAGE OF A PERSON). However, in making what seems like 

a simple assertion such as this, a researcher is actually engaging in a far more complex 

process. In particular, Codes have five key properties that need to be accounted for in 

any sound coding process. 

1. Codes are contextual. For example, it is easier to identify whether a photograph 

contains the IMAGE OF A PERSON than it is to determine whether that person is 

KATSUNGNGAITTUQ. Katsungngaittuq is an Utkuhikhalingmiut word that means 

something like “pleading” or “whining”—but not exactly. A child whining to have 

sugar in her tea when there is no sugar in the house is being KATSUNGNGAITTUQ, 

but so too is a friend who asks you for a favor that makes the you uncomfortable, 

even if no whining or pleading is involved.2 Thus, coding is situated within some 

cultural context: we cannot code without first understanding that context. 

2. Codes are theoretical. When a researcher codes data, the Codes are no longer 

situated only in the cultural context from which the data arose. They are also situated 

in the context within which the research is taking place. This is the well-known 

distinction between emic and etic understanding, where the former refers to 

categories that are meaningful in the community from which the data came, and the 

latter refers to categories that are meaningful within some theoretical framework. 

KATSUNGNGAITTUQ is an Utkuhikhalingmiut word, but it was used by an 

anthropologist to create a theory of emotion concepts as a way of understanding how 

children learn the emotional context of life in Utkuhikhalingmiut culture [1].  

3. Codes are contestable. Like any claims, claims about whether something contains 

the IMAGE OF A PERSON or that a person is KATSUNGNGAITTUQ are also inherently 

contestable. That is, we could argue about whether or not any one picture does or 

does not contain a person, or whether (hypothetically, of course) David is being 

KATSUNGNGAITTUQ when he asks Andrew to “pick up some sushi for me while you 
are getting lunch.” Moreover, because Codes are contestable, a researcher must be 

able to provide specific evidence to support the claim that a Code applies to some 

piece of data. The gesture of pointing to some specific feature in some specific piece 

 
2 This example is drawn from the work of Briggs [1], but see also Shaffer [20]. 
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of the data is the process of coding, and in simplest terms, every claim about a Code 

implies some act of pointing, and every act of pointing is a claim about some Code. 

4. Data is constructed. The pieces of data that we code do not represent natural 

categories or distinctions. They represent a selection of events in the world that were 

both recorded and transformed into individual items to be coded. Identifying 

segments of data to be coded also involves some choice. Even the choice to take 

something as simple as “turns of talk” as individual segments of data is quickly 

revealed to be a choice and not a natural parsing of the data if one takes a 

conversation analytic perspective (see, e.g., [12]). This process of breaking data into 

such pieces, or segmentation, raises its own set of questions about how and why it 

should be done. While the choices that go into segmentation clearly have 

implications for any coding process, we choose to bracket those questions here and 

take it as given that data to be coded has been segmented in some defensible way. 

5. Data is finite. It is only ever possible to code, at any one time, some finite number 

of specific segments of data. This means that our Codes are not only situated in the 

culture from which the data came and within some theoretical framework, they are 

also anchored within the data itself. When we code for KATSUNGNGAITTUQ, we are 

coding for some cultural phenomenon (a particular kind of awkward social 

interaction) that plays a role in some theoretical framework (a theory of emotion 

concepts). But those meanings are also manifest in some particular way or ways in 

the specific set of data that we have. When we code, we are trying to make claims 

about a Code as it appears in the data at hand.  

We use Codes because in order to understand something, we have to know what they 

mean. Meaning is fundamental to any human endeavor, but it is particularly salient in 

the analysis of human behavior. The problem is that the meaning of any single data 

point is hard to ascribe. And if we are not sure that the underlying data mean what we 

think they mean, then the patterns that we find do not have much practical use. 

In his theory of Discourse [8], Gee makes the distinction between what he calls 

small-d [d]iscourse and Big-D [D]iscourse. [d]iscourse is the things that some person 

or people actually said and did in the world at some point in time—that is, the things 

we want to understand. [D]iscourse, on the other hand, is the way that some group of 

people—some community—behave in the world: the kinds of things they say, actions 

they take, tools they use, clothes they wear, and so on. We thus have two parallel 

processes: a process by which data is constructed from [d]iscourse produced by some 

community of people, and a process by which a theoretical understanding of that 

community is construed in terms of its [D]iscourse. One exists in the realm of observing 

and recording events, and the other is a process of interpreting events situated in theory 

and praxis. 

Coding is the key step in the unraveling (and subsequent re-raveling) of meaning 

because it is the process of bridging these two worlds: the world of events and the world 

of interpretation. We refer to the constructs that make up a [D]iscourse—the kinds of 

things that some group of people say and do, to which we attend as researchers and to 

which they attend as members of some community—as [C]odes: the cultural meanings 

that some group of people construe, and that we as researchers, in turn, call out to make 

our theoretical interpretations of that culture. [C]odes are the parts of a [D]iscourse that 
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we want to understand. [c]odes, then, are the features of the data we use to identify 

these constructs: the specific pieces of evidence and rules that we use to warrant our 

[C]odes. A [c]ode is the collection of features (rules, examples, properties) in the data 

that we use to claim that the [C]ode is present. 

It follows that all coding is an application of power. When we attach a [C]ode to 

some segment of data, we are saying to the data and to the people about whom it was 

recorded that we are the arbiters of its meaning—at least for the purposes of our 

analysis. Similarly, we are saying to some theory that we determine whether, when, and 

how its constructs apply in some setting (and, indeed, which constructs are worth 

applying).  

Our only defense for such an act is that we believe we are doing so fairly. That is, 

the representations we make are such that members of a community we are discussing, 

proponents of a particular theory or theories, and informed perusers of the data would 

all feel that our [C]odes are not inaccurate or misleading–that is, we claim what 

Charmaz [2] refers to as resonance. 

In this we are also following the work of Goodman [10] (re-elaborated in Shaffer 

[20]) that all data analysis aims to present some fair sample of the world. The concept 

of a fair sample is based on the idea that all analytical claims are, in fact, re-

presentations of some events in the world, a recasting of some original experiences in 

some digestible form. Such a re-presentation is fair if others would feel that (a) it 

resembles the key features of events in the world, and (b) the things it resembles are 

not isolated instances, but are similar to some larger pool of events and experiences. 

The question then, is how we can (a) choose a set of [C]odes and (b) operationalize 

them into a set of [c]odes that are fair in this sense. In other words… 

3 How should we code? 

We address this question by starting at the end of the coding process, because beginning 

with the final product of coding clarifies some of the criteria that guide earlier steps. 

3.1 Coded data 

Fairness. The end result of coding is a set of coded data: data with fair claims about 

some set of Codes for each of its segments. In some cases, this will be data that has 

been coded by a human rater or raters. In other cases, the data is coded by some 

automated process. 

In human-coded (sometimes called hand-coded) data, there are three possibilities: 

(1) a single rater codes the data alone; (2) two or more raters code some of the data 

jointly and then one or more of them code some or all of the rest of the data alone; 

(3) two or more raters code all of the data. In each of these cases, we have to ask the 
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question: What evidence do we have that the Codes are fair?3 There are two kinds of 

evidence that are usually marshalled. 

The first is that for each [C]ode we provide a definition and examples. The definition, 

of course, is the [C]ode. The name of the [C]ode is, ideally, descriptive and evocative, 

but the definition determines the meaning of the [C]ode. That meaning is always 

enacted within the confines of the data at hand, so the examples provide segments of 

data to which the [C]ode applies. Expressed in the language of psychometrics, the 

definition provides evidence of construct validity (does the [C]ode relate to underlying 

theory?) and the examples provide evidence of face validity (does the [C]ode make 

assertions we expect it to make about segments of data?). 

The second kind of evidence that [C]odes are fair (in the case of multiple raters) is 

some measure of inter-rater reliability (IRR). There are many measures of IRR that 

researchers use, and the pros and cons of different measures have been discussed 

elsewhere [6, 14, 15, 20]. Here we will use Cohen’s kappa (κ), as it is common in 
quantitative ethnography, but whenever we refer to κ we are making a claim about any 

IRR measure a researcher might choose. 

Technically, κ measures the level of agreement between two raters taking into 

account features of the data, or in the language of psychometrics, concurrent validity 

(do two measures of the same construct produce the same results?). But it is easier to 

think of κ as measuring the distance between two raters’ understanding of the data. A 

high value of κ indicates that the raters’ understandings are close to one another; a low 

value of κ indicates they are far apart. The distance is proportional to 1/κ. 

 

Fig. 1. Low values of κ reflect larger areas of uncertainty about the meaning of a 
[C]ode than high values of κ; there are diminishing returns for adding additional 

coders; if there are more than two coders, pairwise measures of agreement are needed. 

We can think of this visually as if each rater had a circle around their understanding 

of the [C]ode, where the radius of the circle is 1/κ (see Error! Reference source not 

found.). The understandings overlap in the area that is less than 1/κ away from both 
raters. Thus, although we never know the “correct” understanding of a [C]ode (since 

there is no one correct understanding), κ gives us a way of bounding the uncertainty 

about the meaning of a [C]ode: It is likely to be somewhere in the area of uncertainty 

between the raters. Thus, a high value of κ gives us confidence that the uncertainty in 

the [C]ode is small.  

 
3 We do not ask: Are the Codes fair? There is no absolute or objective sense in which Codes can 

be fair or not. But we can ask what evidence we have to support a claim that they are. 
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This visual representation of how an IRR measure like κ bounds uncertainty also 
explains why there are diminishing returns to using additional coders. The area of 

uncertainty will surely be smaller at the intersection of three circles then at the 

intersection of two—and smaller still at the intersection of 4 or 5 or 6 hyperspheres. 

But while the area of uncertainty becomes smaller as we add more raters, it still exists. 

When we go from one rater to two, we go from unbounded uncertainty (that is, we have 

no measure) to uncertainty that we can quantify and thus choose to accept or reject. 

Error! Reference source not found. also shows why, if there are more than two raters, 

it is essential to get good agreement between every pair. Otherwise, the uncertainty 

becomes less bounded rather than more. 

Code validation. Determining fairness is often referred to as a validating a [C]ode, 

although we want to emphasize that fairness implies multiple forms of validation, and 

how we assess fairness varies depending on how the data has been coded.  

All data coded by a single human rater. This is most often seen in qualitative studies, 

and the logic is that any qualitative description of events is inherently perspectival, so 

adding a second rater (or more raters) does not make the account any more “objective.”  
In the case of a single rater, the only forms of evidence available are the description 

of a [C]ode and the examples given. In such a case: 

1. Fairness of a [C]ode to existing theory can be warranted by comparing the 

definition to explanations of the theoretical construct(s) to which it relates. 

2. Fairness of a [C]ode to the community that produced the data can be warranted 

by a positionality statement of the rater, and any other evidence that shows the 

rater understands the emic perspective of the community. 

3. Fairness of a [C]ode to the data can be warranted by the examples given, and by 

the fact that a single rater has coded all of the data. 

All data coded by multiple human raters. There are two different ways in which this 

can be done. Using social moderation, each rater codes all of the data and then 

disagreements are discussed until the raters come to consensus (i.e., κ = 1) [11, 20]. If 

social moderation is not used, then κ is computed between the raters. 

When multiple raters code all of the data, the warrants for fairness that apply to a 

single rater can (and should) be used. But we also have information about IRR: 

1. Fairness to theory is warranted if the raters come from the same field or theoretical 

framework. If two raters who understand a theory agree on a [C]ode with (say) 

κ = 0.90, then although we do not know that any one segment of data is coded in 

complete accord with the theory, there is a bound on how far from the theory the 

[C]ode might be. 

2. Fairness to the community is warranted if one (or more) of the raters comes from 

the community that produced the data. There are circumstances where it might 

not be possible to have the data coded by a member of the community, and so 

often community triangulation is done with the analysis as a whole rather than 

each individual [C]ode. But when possible, including members of the community 

in the coding process is a strong warrant for fairness to the community. 
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3. Fairness to the data is warranted by the fact that all of the coders have coded all 

of the data. κ is an accurate measure of the raters’ agreement for this set of data. 

Multiple human raters code some data jointly and some alone. For data coded 

jointly, all of the warrants apply as when multiple raters code all of the data (and thus 

also the warrants that apply to a single coder). However, the circumstances become 

more complex for the data that is only coded by a single rater. 

For the data that is coded by both raters (DBR), we can measure the rate of 

agreement for that data. If κ(DBR) = 0.91, then we know that the rate of agreement for 

the DBR was 0.91. Notice, however, that the DBR is only a subset of all of the coded 

data. We cannot simply assume that because κ(DBR) = 0.91 that κ for all of the data—
if we measured it—would be 0.91. That would be as statistically unsound as measuring 

the heights of 100 students at the University of Wisconsin, taking the average (which 

when we did it was 1.75 meters), and then concluding that the average height of 

everyone in Wisconsin is 1.75 meters. 

We have taken a sample from some population (all people in Wisconsin or all the 

coded data), computed a statistic (either average height or κ), and then assumed that the 

value of the statistic for the population is the same as for the sample. Instead, we need 

to control for Type I error (false positives). With height data we might do this using a 

t-test on the sample. But IRR statistics in general, and κ in particular, have distributions 
whose shapes vary based on the characteristics of a sample; thus it is impossible test 

them analytically. 

We recommend controlling for Type I error using Shaffer’s ρ, which is an empirical 

rejective method designed to warrant claims about the κ for a population based on the 

κ for a sample [6, 7, 20]. The ρ statistic functions much like a p-value in a t-test: if it is 

below some critical value (typically α = 0.05 or α = 0.01), then we conclude that κ for 
all of the coded data is above some threshold.4 That is, we use κ and ρ to warrant that 
the coding done by single raters is fair to the data in the sense that bounding uncertainty 

now takes into account the fact that our measure was only on a sample of the data. 

If we have such a warrant for the rate of agreement over all the data, then we can 

treat the data coded by a single rater as if it were coded by both raters with a rate of 

agreement at or above the threshold we specified, with all of the warrants that entails. 

Automated coding. If one of the raters is some automated process—more commonly 

referred to as an automated classifier—then the above still applies, with one exception. 

Fairness to theory and fairness to the community are impossible to achieve with only 

one human rater and an automated classifier. The automated classifier does not 

understand the theory and is not a member of the community. Thus, two human raters 

and one automated classifier are required to use IRR to warrant fairness. The human 

raters provide warrants to fairness; then acceptable κ and ρ between the automated 
classifier and each human warrant that the classifier can code the remainder of the data 

fairly. 

Once an automated coding process is determined to be fair, it might be used to code 

more data that is similar to the data on which it was developed. Technically, this 

 
4 The ρ statistic can be applied to any measure of IRR with raters using binary codes. There are 

other statistics that can be used for raters when using non-binary codes. 
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requires a claim of exchangeability: namely, that the original data and the new data are 

not different in any way that impacts the classifier. We can warrant such a claim by 

(1) explaining why we think the conditions are the same, or (2) showing that the 

classifier performs fairly on the new data. Using the first approach means that the 

fairness of the new coding depends on the accuracy of the assertion of exchangeability. 

The second requires repeating the coding process: two humans need to code the new 

data and test agreement with each other and with the classifier.  

3.2 Coding practices 

Definition and examples. The definition of a [C]ode is the claim that is being made 

about the meaning of a segment of data. We sometimes see brief and relatively 

uninformative definitions (for example, defining a [C]ode for FRIEND as “any reference 
to a friend or friendship”). But brief definitions make weak or vague claims. We 

recommend more robust definitions, such as:  

FRIEND: Explicit reference to a being a friend or any related terms (e.g., buddy, pal, 

chum, bestie), or to the general concept of friendship; could include familial terms 

in relation to a non-family-member, for example, calling someone “my sister” when 

they are not actually a sister; referring to a platonic relationship of mutual respect, 

trust, loyalty, and/or honesty using a single term or phrase. 

The definition of a [C]ode should always be accompanied by examples from the 

dataset. Examples show instances where the definition of the [C]ode clearly applies in 

a case or cases that are not trivial or obvious. So, in that sense, a segment of data where 

someone says “You’re a good friend” is not a good example of the [C]ode FRIEND. 

Examples should show no more of the context than is needed to see that the [C]ode 

applies. 

Transcription. When coding some kinds of data (for example, video or audio), a 

researcher has a choice of coding the original data directly, or producing a text transcript 

before coding. Coding directly from a source like video or audio has several 

advantages: (1) there is no widely-accepted standard for transcription of the visual 

content of video data; (2) there is no concern about transcription error; and (3) any 

transcription is a data reduction, so coding from video or audio data directly preserves 

context. However, when coding directly from audio or video: (1) segmentation can be 

more difficult than from transcribed data, and (2) developing automated classifiers, at 

least with current technology, is difficult. In the ideal case, transcript and original 

source can be co-registered (for example, using time stamps), so researchers can code 

from the transcript but preserve the original context. However, we believe that best 

practice is not to code from audio or video data directly but to add to the transcript 

information need for coding (e.g., actions, gestures, intonation). Adding information to 

the transcript makes the evidence for a [C]ode clear, and thus provides a stronger 

warrant. 

Segmentation. As we argue above, segmentation is a vital part of coding. There is 

not space here to discuss all of the considerations that go into segmentation, but we do 

want to make three observations.  
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Meaningful breaks. Segmentation is the process of dividing data into meaningful 

pieces. While some researchers segment data by time (e.g., coding 2-second or 1-

minute intervals of the data), this is not best practice for most contexts. Phenomena of 

interest can span an arbitrary break in the data, so data should be segmented based on 

break points that correspond with breaks in the activity being coded: for example, turns 

of talk in conversation, questions and responses in an interview, sentences or 

paragraphs in text, or peaks or valleys in a record of galvanic skin response. 

Open coding. One alternative to segmentation is open coding, or identifying 

evidence for a [C]ode in un-segmented data, a practice sometimes used in ethnography. 

However, it is difficult to achieve good IRR with open coding, and without pre-

identified segments of data, it is difficult to account for even simple variables, like 

duration or frequency of [C]odes. Open coding thus precludes meaningful 

quantification. 

Equivalency. To make quantification possible, segmentation should a divide data 

into pieces that are exchangeable—that is, equivalent for the purpose of counting. 

[C]ode representation. Researchers also need to decide how to record information 

about a [C]ode for each segment of data. Binary representation is the most common, 

where a 1 indicates that the [C]ode applies to the segment of data and a 0 indicates that 

it does not. A continuous representation describes a [C]ode by some continuous 

measure of its intensity or certainty in a segment of data. For example, a value of 0.5 

might indicate that the [C]ode applies, but not strongly, or that the rater is 50% 

confident that the [C]ode applies. Binary representations are more common because 

people generally have difficulty estimating probabilities of their certainty or intensity 

of meaning. Some automated classifiers report continuous values, and if a binary and 

continuous score are being compared, a cut score is typically applied: for example, if 

an automated classifier reports more than 60% certainty, that becomes the equivalent 

of a human coding positive. 

It is possible to construct categorical classifiers: for example, {“[C]ode definitely 

does not apply,” “[C]ode probably does not apply,” “[C]ode probably applies,” “[C]ode 

definitely applies”}. These are not recommended because using them usually means 

converting the categories to a continuous value, and it is difficult to warrant that the 

intervals between categories are numerically equivalent. Some researchers use a 

stacked binary representation: indicating the binary for each [C]ode using the presence 

or absence of the label, and listing the labels together. We recommend against this 

because it is more difficult to conduct IRR or to use quantitative models on a stacked 

binary representation. 

The IRR loop. The fundamental process of achieving good IRR for a [C]ode 

involves an iterative cycle of coding, testing, and refining. 

Subsets. At any point in the IRR loop, the data to be coded consists of three non-

overlapping subsets: (1) A holdout set, which consists of all of the segments of data 

that have not yet been seen by any rater, human or machine, in any way; (2) a test set, 

which consists of any data that has been coded by one or more raters where (a) no rater 

has seen another’s coding, and (b) no test for IRR has been performed; and (3) a 

training set, which consists of any data not in the holdout or test sets. 
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IRR principles. IRR can only be warranted by (a) establishing that a test set produces 

a κ for the whole dataset that is above some threshold, τ, at alpha level, α (typically 0.05 

or 0.01), where (b) the test set was sampled from the holdout set. The first principle is 

discussed above (section 3.1). The second addresses information leakage [13, 16]. 

Coding is a process of model development: a mental model for a human rater or a 

predictive model for an automated classifier. These models are created using the 

training set and tested using the test set. Information leakage in coding comes about 

when information about the test set is contained in the training set—that is, when a rater 

has access to information about the test set prior to coding. Such leakage can lead to 

biased estimates of IRR. Thus, the IRR loop works as follows:  

1. Rater 1 codes segments of data chosen at random from the holdout set. 

2. N items from step 1 are chosen for a test set; remaining items are added to the 

training set. 

3. Rater 2 codes the test set. 

4. Values are computed for κ and ρ. 

5. If κ(N) > τ and ρ(τ) < α, then we can warrant that κ(full dataset) > τ, and the IRR 

loop is done; or 

6. If ρ(τ) ≥ α, then the test fails and the test set becomes part of the training set. 

a. Raters examine the segments of data on which there was disagreement. 

b. If necessary, the definition of the [C]ode is changed. 

c. The raters return to step 1. 

Threshold selection. The choice of threshold depends on the statistic chosen, but 

historically researchers have chosen thresholds that are lower than is desirable. For 

example, Cohen argued that κ values of 0.61–0.80 indicate substantial agreement [4]. 

However, raters could disagree on 20% of the data and still achieve κ > 0.60. It would 

be difficult to argue that such a [C]ode is fair. To achieve fair [C]odes, researchers 

should set higher thresholds, as high as τ = 0.90 when using κ. 
Eagan and colleagues [5] developed a binary replicate test for determining 

appropriate IRR thresholds. In this approach, once coding is complete and a statistical 

model has been made, the binary replicate test introduces random error into the coding. 

The level of κ at which the original result becomes insignificant provides an empirical 

threshold for acceptable error. 

Separability of [C]odes. While there are studies that report an “overall κ” or “κ 
across all codes,” any criteria of fairness has to apply to each [C]ode individually. 

[C]odes can be related to one another; however, it makes no sense to assert that if one 

[C]ode is manifestly unfair but the rest are fair, that the [C]odes are fair “overall.” In 

applying a [C]ode, we assert that a segment of data means something. If that assertion 

is not defensible, then conclusions drawn from it are not defensible either. 

Test set size. The optimal size of a test set will vary depending on the IRR statistic 

being used and the frequency, or base rate, of the [C]ode in the data. For κ, we have 

found that test sets of 80 ≤ N ≤ 100 are typically large enough to get acceptable 

agreement. In early iterations of the coding loop, however, when the raters are just 

starting to come to a consensus on the meaning of the [C]ode, smaller test sets are more 

efficient, as raters can more quickly see differences in their understanding.  
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Test set construction. The traditional approach to IRR is to construct a test set by 

randomly selecting items from the holdout set. (In step 2 of the IRR loop, all of the 

items from step 1 are included in the test set.) This random selection is necessary for 

generalizing from the test set to the full set of data. However, researchers who control 

for Type I error using ρ can also use conditional sampling. This is possible because ρ 
is an empirical rejective method: it constructs multiple test sets and uses them to 

determine the likelihood that the actual test set came from data with κ < τ. 
Specifically, in step 2 of the IRR loop, researchers can select some number, g, of the 

items from step 1 that Rater 1 coded positive and include those in the test set; the 

remaining N − g items are chosen at random from the rest of the items coded in step 1. 

The result is a test set with an inflated base rate, or minimum frequency of items that 

Rater 1 coded positive. This is useful because: (1) more items coded positive provide 

more information for raters when they disagree; and (2) κ and many other IRR statistics 

are more sensitive at higher base rates. Taken together, these advantages of conditional 

sampling—made possible by ρ—make it easier to get high levels of agreement.  

Reporting [C]odes. [C]odes should always be described with the name or label for 

the [C]ode, its definition, examples, and a report of the results of any IRR that was 

conducted. Results of IRR for each [C]ode should include the statistic used, the 

threshold chosen, the statistic value for the final test set, the method for controlling for 

Type I error and its value, as well as the size of the test set. Table 1 shows an example 

codebook entry for the [C]ode FRIEND. 

Table 1: Example codebook entry for the [C]ode FRIEND. IRR columns report 

Cohen’s κ computed on a test set of N = 80 items and the result of the ρ test to 
determine whether κ > τ = 0.90. Values are reported for comparison between two 

human raters (H1/H2) and each human and an automated classifier (H1/AC and 

H2/AC). Bold entries indicate significance at the ρ < α = 0.05 level. Because κ is not 
statistically higher than τ for all pairs of raters, the [C]ode is not fair, and a choice 

to include such a [C]ode in any analysis would require careful justification. 

Code Definition Examples 

IRR 

κ(80)/ρ(0.90) 

H1 

H2 

H1 

AC 

H2 

AC 

FRIEND 

Explicit reference to a being a friend or 
any related terms (e.g., buddy, pal, 

chum, bestie), or to the general concept 

of friendship; could include familial 

terms in relation to a non-family-

member, for example, calling someone 
“my sister” when they are not actually a 
sister; referring to a platonic 

relationship of mutual respect, trust, 

loyalty, and/or honesty using a single 

term or phrase. 

We’re like family, I’ll 
always be there for you. 

 

What are friends for? 

 

You totally get me, 

that’s why we’re BFFs. 
 

Wuddup cuz? 

0.91 

0.06 

1.00 

0.01 

0.96 

0.02 

 

Derived coding. Thus far, we have been discussing what Shaffer [20] terms primary 

[C]odes. With a primary [C]ode, segments of data can be coded using only evidence 

from within a segment itself. In contrast, coding a segment of data with a derived 
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[C]ode requires combining two or more pieces of evidence, which may or may not 

come from the segment being coded. When it is difficult for raters to come to agreement 

on a complex [C]ode, they can often identify simpler primary [C]odes that can be fairly 

coded, and then use their combination to make assertions about more complex meaning. 

Derived [C]odes are also essential when addressing issues of context in coding. 

Coding a segment of data in context means that a decision about the meaning of the 

segment uses (points to) evidence from elsewhere in the data. As discussed above (see 

section 2), this act of pointing is always equivalent to some primary [C]ode; thus coding 

in context can always be accounted for, in principle, using a derived [C]ode. 

When using derived [C]odes, it is sometimes effective to use the primary [C]odes 

directly and let a model of the [D]iscourse connect them into more complex [C]odes. If 

derived [C]odes are used, however, they need to be validated: it is not the case that if 

primary [C]odes are fair, any combination of them will be as well. 

Automated coding. There are three types of automated classifiers in use today. 

Supervised machine learning. Supervised machine learning methods take a set of 

human-coded segments of data as input. The algorithm identifies a set of features in the 

data (for text data, these could be words, bigrams, trigrams, length of segments, etc.) 

and then finds the combinations of features that best predict the human coding. Such 

models use cross validation to test the accuracy of the classifiers: the algorithm creates 

a holdout set and a training set from the human-coded data, then develops a classifier 

from the training set and tests it on the holdout set. These methods are easy to use; the 

only human intervention required is the input of the initial coded data. However, 

supervised machine learning methods require large amounts of data to produce accurate 

classifiers—often on the order of thousands of segments. Moreover, supervised 

machine learning models lack transparency: the combination of features is often a 

complex calculation that cannot be inspected or explained by a human researcher. The 

warrants for fairness from supervised models may thus appear weaker than other 

approaches. 

Unsupervised machine learning. Unsupervised machine learning algorithms, such 

as topic modeling, take a set of uncoded text data and extract groups of keywords that 

are related to one another. These groups can be taken as [c]odes, and human researchers 

can inspect the keywords to try to discern the [C]odes to which they refer. Unsupervised 

models are often tempting for researchers to use, especially in exploratory analyses, as 

they work quickly and require no initial coding. They also provide a transparent model 

by producing explicit groups of keywords for each [C]ode. However, unsupervised 

models cannot be used as fair classifiers unless the implied [C]odes are defined and a 

complete process of IRR is carried out. IRR in these circumstances is often problematic 

because one of the raters (the automated classifier) cannot change its coding. Moreover, 

from experience we have found that validating unsupervised models requires human 

raters to code a substantial number of segments of data. 

Active machine learning. In active machine learning, the algorithm selects segments 

of data to present to a human rater so as to minimize the number of excerpts that a 

human rater has to code. For example, nCoder [17, 21] automatically constructs test 

sets with inflated base rates based on its current classifier, including segments that 

contain high-frequency words that the human rater has not seen before. When a test set 
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does not result in acceptable IRR, the system shows the segments where raters 

disagreed and asks the human rater to identify what features they used to make their 

coding decision. As a result, active machine learning systems can be substantially more 

efficient than supervised or unsupervised methods. Such systems also represent [c]odes 

as explicit descriptions of words or patterns of words, and are thus fully transparent. 

Advantages of automated classifiers. Automated classifiers, once developed, can 

code large amounts of data quickly and do not suffer from coding fatigue: the 

phenomenon where human raters become less attentive after coding many segments of 

data. Automated classifiers are consistent and can potentially be applied to new data 

collected under similar conditions to the original. 

Subgroup fairness. Because many datasets contain subgroups that have low 

numerical representation in the data—such as populations defined by demographic data 

such as race or disability status—bias can result when that dataset is used to develop a 

[C]ode: for example, training facial recognition software using predominantly white 

faces, and as a result misidentifying the faces of people of color [3, 18]. Many of the 

methods used to assess fairness depend on the frequency with which events occur in 

the data. If a subgroup is underrepresented in a dataset, then data from that group may 

be underrepresented in the test set used to compute IRR and warrant fairness. Attention 

should be paid to examining the discourse of subgroups relative to any [C]ode. If the 

code occurs more or less frequently in a subgroup than in the discourse of the 

community as a whole without any theoretically-sound reason, or if disagreements in 

IRR occur more or less frequently in segments of data from the subgroup, then the 

coding process should be examined with some care.  

3.3 Generating [C]odes 

Grounded generation cycle. The grounded generation cycle is the fundamental 

process for identifying [C]odes and warranting that the choice of [C]odes is grounded 

simultaneously in theory, community, and data [2]. 

1.  [C]odes must reflect understanding generated from close reading of the data. Glesne 

[9] describes coding as a process of sorting and defining, in which a researcher 

progressively puts similar segments of data together to identify common themes. 

Shaffer [20] suggests looking for striking or interesting segments of data and using 

those to identify meaningful categories in the [D]iscourse. In these approaches, the 

researchers’ understanding of the data and the community it represents helps 

generate a set of fair [C]odes. 

2.  [C]odes must be fair to some theoretical framework. In qualitative approaches, the 

researchers’ understanding of the setting needs to relate to existing research. 

These two perspectives—understanding the data and understanding relevant 

theory—are sometimes described as bottom-up versus top-down coding. However, 

developing good [C]odes is never entirely either a bottom-up or top-down process. 

Rather, it is an iterative process of moving back and forth between data and theory. 
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Quantitative tools. The grounded generation cycle can be supported using 

quantitative techniques. One common approach is to construct a table of word 

frequencies that can help researchers check that they have not overlooked some key 

term of art. Some use word stemming to gather together variations on the same word 

(e.g., command, commands, commander, commanding). Other natural language 

processing approaches can identify words (or N-grams) that occur more frequently in 

the corpus of data than in common usage, and others (e.g., latent semantic analysis, 

topic modeling, or skip-grams) use the frequencies with which words co-occur in 

common usage to identify families of words that occur together in the data. Any of 

these approaches are appropriate tools to augment the qualitative process of code 

generation, as long as all segments of data that are measured quantitatively are placed 

in the training set, and are not used to measure IRR. This includes any summary 

information about the data, which should exclude information from the holdout set. 

Thus, a holdout set should be created at the beginning of the code generation process.  

Automated approaches to code generation. As discussed above, there are 

algorithms that can identify groups of related words and phrases in uncoded data (topic 

modeling is one of the best known). Such automated approaches can be useful in 

identifying potential topics that might be used as [C]odes, and it is possible to use such 

topics and/or keywords as input to the grounded generation cycle. However, there is 

no way to generate fair [C]odes using only an automated process. A [C]ode is not 

only a claim that some topic exists in the data, but that it is a meaningful part of the 

[D]iscourse of some community. This can only be warranted by a process that 

understands the meaning of segments of data, which existing automated processes 

cannot do. 

Iterativity. This description of creating fair [C]odes might suggest that it is a linear 

process, however, the iterativity in coding goes beyond the grounded coding cycle and 

the IRR loop. In practice, the stages of [C]ode identification, implementation, and 

validation are not independent. For example, the process of getting IRR with one 

[C]ode might lead to the realization that the definition of the [C]ode needs to change 

(step 6b in the IRR loop). One persistent question in managing the iterative process of 

coding is whether to start with broad or narrow [C]odes. We recommend starting with 

broad [C]odes and progressively making them narrower. It is notoriously hard to get 

good IRR for very specific [C]odes because fine distinctions between [C]odes are often 

hard for both human and machine raters to identify. Subdividing an initial broad [C]ode 

has the advantage of only requiring consideration of segments already identified by the 

broad [C]ode. Thus, it is generally easier to break a broad code into more specific 

[C]odes than it is to aggregate very specific [C]odes into a broader category. 

Huis clos. It is sometimes tempting to use existing tools for making claims about 

data: sentiment analysis, for example, or reading level analysis. However, whatever 

their source, and however well established the algorithms that produce them, they are 

systems for making claims about segments of data. Therefore all of the concerns above 

regarding fairness apply. Consider, for example, a measure like the number of words in 

a segment of data. This is easy to calculate, but in the context at hand, is the number of 

words meaningful? And if so, what does it mean—and how do we know what it means? 
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Thus, any claim about data is a [C]ode, and the process of coding—and concerns about 

warranting code fairness—are not only universal, but unavoidable. 

4 Discussion 

We have argued here that coding is a process fundamental to the analysis of data, 

because coding is the bridge between the world of data and the world of interpretation. 

The central question in coding, then, is how to make sure that the linkages between data 

and analysis are valid, in the sense that our interpretation of the analysis and our 

interpretation of the data are both consistent with one another and fair. 

We have consistently addressed this question in terms of fairness rather than validity, 

not because quantitative ethnographers can ignore questions of validity, but because we 

think that the term itself is used in ways that are complex and sometimes contentious. 

In the end, validity is about meaning. As researchers we care that the meanings we 

assert respect the communities we are describing, the theoretical constructs we are 

using, and the data we have collected. In this sense, validity as it is sometimes formally 

construed is necessary but insufficient. Thus, quantitative ethnographers care not only 

about cross-validation of coding algorithms, but also about IRR between humans, and 

between humans and automated classifiers. They care not just about whether coding 

can be done quickly, but that it is the result of a process that manages [C]ode generation, 

IRR, coding, and code reporting, all within the framework of best practices for assuring 

that the results are fair. 

Of course, there is room in quantitative ethnography for exploratory analyses. 

Quantitative ethnographers can, do, and should at times conduct preliminary analyses 

that use unvalidated codes, or put data into a model as a way of gaining insight into its 

meaningful structure. It is absolutely possible to start with such approaches and validate 

them later. But in doing so, we must remember that an exploratory analysis that takes 

these approaches is, by definition, making claims that may be unfair, and therefore we 

need to use the utmost caution in using them in any public-facing analysis of data.  

We hope that the considerations we have explored above provide a helpful 

framework for coding data fairly, but we recognize that issues arise in any analysis that 

cannot be addressed with simple reference to general guidelines. We thus believe that 

Siebert-Evenstone’s Maxim [22] is the best guide for coding in a way that is consistent 

with theory, community, and the evidence available: When in doubt, read your data. 
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